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ABSTRACT

An acoustic tomography array consisting of six transceiver moorings was

jointly deployed by Woods Hole Oceanographic Institution and Scripps

Institution of Oceanography in the Greenland Sea during the second half of 1988.

Two of the primary objectives of this thesis are: (1) to set up and test a stochastic

3-D inversion code for the Greenland Sea Acoustic Tomography data analysis;

and (2) to evaluate the performance of the acoustic system through resolution

and variance analyses. In acoustic tomography, the sound speed perturbation

field is estimated from measured acoustic travel time perturbation data. A unique

sound speed perturbation estimate can be constructed using the Guass-Markoff

theorem. However, the theorem requires the specification of the covariance of

the sound speed perturbation field, which is generally not exactly known. Via

computer simulation, we examined the sensitivity of the estimate to uncertainty

in the sound speed field correlation specified. In addition, we also examined the

effects of an increased random experimental noise level and a change in array

geometry due to mooring failure on the estimate. The three major results are

that: (1) the estimate is less sensitive to a positive uncertainty in correlation

length than to a negative uncertainty in an ocean volume containing large

structures, while it is more sensitive to a positive uncertainty than to a negative

uncertainty in an ocean volume containing small structures; (2) the estimate

error is primarily bias error rather than random error; and (3) the failure of a

mooring causes a large increase in RMS error in regions no longer containing

acoustic rays, but it results in an increase in RMS error of only 25% in regions

which still contain acoustic rays.
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I. INTRODUCTION

A. OCEAN ACOUSTIC TOMOGRAPHY

Ocean Acoustic Tomography is a method used to monitor the mesoscale

ocean variability (which is the oceanic analog of atmospheric weather) and it was

introduced by Munk and Wunsch (1979). This technique is analogous to the

medical X-ray procedure known as Computer Assisted Tomography (CAT)

(Figure 1-1.a). Roughly speaking, tomography exploits the fact that the ocean is

"transparent" to acoustic rays to remotely sense the properties of an ocean

region.

X-ray source ocean front

body - s - - - - - - - -

transceiver . - -

: 5 .5.. . -ed - -" --' ,_,

40 - - - ---- - -, - -k

(a) Medical CAT (b) Ocean Acoustic Tomography

Figure 1-1: The Comparison of Medical CAT and Ocean Acoustic
Tomography.

In practice, a number of acoustic transceivers are deployed at positions chosen to

allow for coverage of an ocean volume of interest (such as a region containing

mesoscale eddies or a frontal system) (Figure l-lb). The most common



application of tomography is for estimating the perturbation of the sound speed

field from a set of measured acoustic travel time perturbations. The

perturbations in sound speed are assumed to be so small that the perturbations in

acoustic travel time between each pair of transceivers are linearly related to the

sound speed perturbations. The modeling of the travel time perturbations due to

the sound speed perturbations is known as the forward problem. Once the

forward problem is solved, inverse methods which are widely used in

geophysical research (Backus and Gilbert, 1967) are applied to the travel time

data for the reconstruction of the the sound speed perturbation field.

Ocean Acoustic Tomography offers several advantages over conventional

hydrographic surveying method. These advantages are pointed out by Chiu

(1978): (1) the system can be implanted in the ocean on a semipermanent basis to

allow for continuous observation; (2) it is not affected greatly by weather

conditions; (3) it has high temporal resolution; (4) it can cover an extensive

volume of the ocean interior and probe the different parts simultaneously; and

(5) only a few moorings are needed, thus minimizing the effort in deployment

and maintenance.

Since the first successful experiment (the 1981 Three-dimensional Mesoscale

Experiment), additional tomography projects have provided measurements of

mesoscale eddies (Cornuelle et al, 1983), planetary waves (Chiu et al, 1987),

currents (DeFerrari et al, 1986), internal waves (Stoughton et al, 1986), basin

mode oscillations (Bushong, 1987), and surface waves (Lynch et al, 1987). In the

future, monitoring of large-scale ocean dyramics on a global basis may be

achieved using cross-basin transmissions.
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B. GREENLAND SEA PROJECT OCEAN ACOUSTIC

TOMOGRAPHY

The Greenland Sea Project (GSP) is a plan developed by the international

Greenland Sea Science Pianning Group which was appointed by the Arctic Ocean

Sciences Board (AOSB). The overall goal of this five-year program (from 1987

to 1992) defined by AOSB is to understand the large scale, long-term

interactions among the air, sea, and ice in the Greenland Sea. The primary

region of the study is bounded by Fram Strait to the north, Spitsbergen and the

Mohn Rise to the east, the Greenland-Jan Mayen Ridge to the south, and

Greenland to the west (Greenland Sea Science Planning Group, 1986, pp. 1-7).

The plan is designed to study the following ocean dynamics: (1) the seasonal

and interannual variability of the sea ice cover; (2) ocean ventilation and

convection of the deep water; (3) ocean circulation and mixing; (4) atmosphere

energetics; and (5) biological processes. The Ocean Acoustic Tomography Array

is a component used in GSP to monitor the process of ocean ventilation and

convection in the Greenland sea central gyre (Greenland Sea Science Planning

Group, 1986, pp. 1-7). It is the process of ventilation and convection that gives

the Greenland Sea central gyre the ability to affect the oceans throughout the

world.

An acoustic tomography array consisting of six transceiver moorings with a

pentagonal geometry was jointly deployed by Woods Hole Oceanographic

Institution and Scripps Institution of Oceanography in the Greenland Sea during

the second half of 1988. Figure 1-2 shows the tomography array position and the

GSP area.
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Figure 1-2: Acoustic Tomography Mooring Array Position and Geometry
Configuration.
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For convenience of calculation, the given geodetic position (latitude and

longitude) of each array element has been translated into an xy position using a

Transverse Mercator (TM) projection. To do this, the longitude of the central

mooring (array #6), was chosen as the central meridian of the TM projection.

The false origin was set at 73°N and shifted to 120 km west of the central

meridian. This coordinate system gives only slight position distortion at the edge

of the array. The ray paths can then be calculated in the xy planar coordinates

rather than in geodetic coordinates. TABLE 1-1 shows the coordinate conversion

for the moorings as well as the depths of the acoustic sources and vertical

receiver arrays.

TABLE 1-1: COORDINATE CONVERSION OF THE ACOUSTIC

MOORINGS (USING WGS72 SPHEROID)

Mooring Lat. Lon. x y S-depth* R-depth**

(meter) (meter) (meter) (meter)

I 75°47.9'N 1004.7'W 150726 312598 94.5 145.3

2 74°53.3'N 1°24.8'E 225124 213940 95.0 145.4

3 7400.4'N 1005.2'W 154249 112659 94.6 145.1

4 7418.9'N 4059.0'W 36008 148715 94.6 117.0

5 75°25.2'N 5*15.9'W 33882 272309 94.8 117.7

6 74054.0'N 2012.0'W 120000 212040 95.2 145.7

The depth of acoustic source.

** The depth of vertical acoustic receiver array.
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C. THESIS OBJECTIVE

The purpose of this research is to develop computational tools in preparation

for analysis of the tomography data from the GSP. Specifically, our objectives

are:

, to set up and test a stochastic 3-D inversion code for the Greenland Sea

Acoustic Tomography data analysis; and

* to investigate the sensitivity of the sound speed perturbation estimate to

our uncertainty in the sound speed field correlation, changes in the random

experimental noise level, and changes in array geometry due to mooring failure.

The second objective is accomplished via computer simulation.

In Chapter II, we discuss the behavior of an acoustic ray in an

inhomogeneous moving medium. A linear sound speed profile is taken as the

reference state of the sound speed field. Based on this reference state, a

numerical 4th order Runge-Kutta integration method was used to calculate the

paths of the eigenrays for establishing the forward acoustic model. We then

discretize the forward model by dividing the ocean volume into 500 boxes in

order to cast the problem into a matrix form for the computer simulation.

In Chapter III we present a three-dimensional stochastic inverse method

which is the distribution-free Gauss-Markoff estimator. Due to insufficient

experiment data, the inverse problem is underdetermined. In this stochastic

approach, a priori information is specified in the covariance matrix of sound

speed perturbations. The covariance gives additional constraints to the system

and therefore a unique solution is obtained. Two measures, RMS error and

resolution length, are used to quantify the performance of the estimator at each

box location.

6



The ocean is a dynamic and inhomogeneous environment. It is difficult to

incorporate an exact sound speed perturbation covariance matrix as a constraint

since we do not have enough statistical information at this time. Therefore, an

approximate sound speed perturbation covariance matrix is generally used. When

the covariance is inexact, the estimator is suboptimal. In Chapter IV, we vary the

assumed correlation length (which is used to construct the sound speed

perturbation covariance matrix for the estimator) to determine the sensitivity of

the system to uncertainty in correlation length. We also study the effects of

experimental random noise and failure of array elements on the estimate on the

estimate.

In Chapter V, we present a summary of our research, along with results and

conclusions. Furthermore, we propose a criterion for designing estimators for

the analysis of the GSP data. Finally, we make recommendations for improving

our research.

7



II. ACOUSTIC FORWARD MODELING

A. TRAVEL TIME

In acoustic tomography, the sound speed and flow fields are reconstructed

from travel time measurements. The corresponding forward problem is,

therefore, to find eigenrays, i.e., those rays which emitted by the source that are

intercepted by the receiver, and to establish the relation between the

measurement and the unknown fields. Each eigenray has a unique launch angle,

and a unique path through the ocean, thereby sampling the sound speed field and

flow field, at different locations (Cornuelle, 1983, pp. 41).

The geometric approximate travel time along a ray path, T(t), can be

calculated by integrating the ray slowness along the path. In the presence of a

current V(r,t), T(t) is given by

T(t) ds

fth c(rt) + v(r,t).t (2.1)

where c(r,t) is the sound speed at time t and position r, V(r,t) is the ocean
A.

current velocity, t s a unit vector tangent to the ray, and s is the arc length

along the path. The travel time is changed by the sound speed perturbation field,

8c(r,t), which is the deviation from the reference sound speed, c0(r). The

reference sound speed can be the overall space-time average sound speed. Thus

the travel times in a reciprocal transmission can be expressed as

8



ff ds
T = To + IT= /

path c°(rt) + &c(r,t) + v(r,t) • T (2.2)

and

b b ds
T =To+8T=f

path c,(rt) + c(r,t) - '(r,t) • r (2.3)

where the superscripts f and b refer to forward and backward transmissions,

respectively, and 8T is the perturbation of the reference travel time To.
-2

In most ocean environments, 8c/co is on the order of 10- . Thus we can

approximately linearize the reciprocal travel time perturbations as

lT= _( [c(r,t) +C (rt) a

path (2.4)

and

S&:(r,t) - v(r,t). t d s8iT =- ds.
Co(r)

path (2.5)

Taking the sum of Eq. (2.4) and Eq. (2.5), one obtains:

f b

8T+= 8T + T c(r,t) ds,
2 path cjr) (2.6)

while taking the difference of Eqs. (2.4) and (2.5), one obtains:

9



8T- = 8T -8T v(r,t) T ds,
2 f c.o(r)

path (2.7)

where 8T+, half of the summation of the forward and backward travel time

perturbations, is linearly related to the sound speed, and 8T-, half of the

difference of the forward and backward travel time perturbations, is linearly

related to the current. In this thesis our focus is on the estimation of the sound

speed perturbations only, and we won't be dealing with Eq. (2.7) at all.

In order to express the travel time in a vector form the continuous integral

in Eq. (2.6) was discretized by dividing the ocean into small boxes, in which the

sound speed perturbation was assumed constant. Figure 2-1 shows the horizontal

transceiver array configuration and the corresponding box geometry in a

horizontal slice.

In this project we discretized the ocean volume by 500 boxes (10xx0 squares

horizontally and 5 layers vertically); the limitation of computer memory space

in the microVAX dictated this decision.

After the discretization of the sound speed perturbation field into a vector

, the vector T containing all the eigenray travel times can be expressed in a

matrix-vector form as

"= A , (2.8)

where

aiiai) 8c f_ c o

Jc (2.9)

10



is the element in the ith row and jth column of the matrix A and is equal to the

integral of -1/c, along a segment of the ith acoustic ray path in the jth ocean
0

box.

(kin)

200,

160

820

0 40 80 120 160 200 (k.)

x

Figure 2.1: The Horizontal Transceiver Array Configuration and the Box
Geometry System Used.

B ACOUSTIC RAYS IN AN INHIOMOGENEOUS MOVING
MEDIUM

A numerical ray-trace algorithm for the acoustic rays in an inhomogeneous

moving medium was used in our study. The procedure was developed by Chiu

(1985). A summary of the theory will be given in the following discussion.

11



1. Ray Path

It is well known, in acoustic ray theory, that the acoustic rays in a

motionless medium with space dependent index of refraction, n(r), is described

by the eikonal equation:

I V(D(r) n(r) ' (2.10)

where (D(r) is the eikonal function (i.e., acoustic phase) defining the wave fronts,

r = (x,y,z) is the position vector, and V1(r) points to the direction of

propagation of acoustic field energy. However, when the inhomogeneous

medium is moving with a velocity given by W, the governing eikonal equation for

acoustic wave fronts becomes (Ugin~ius, 1970)

2

V (r)I = n(r)2(1 - v * (r))_c° (2.11l)

Ugin~ius (1970) has derived a second-order vector differential equation

governing the ray paths based on the eikonal equation Eq. (2.11). The equation

for ray paths is
d
&- (Nr') - (r".V')V + r'x(VxV) = VN,ds (2.12)

where

N 

pn

N=g , V=pv, (.3
S= (2.13)

S = 41 - 2+(r'ov ¥}, (2.14)

and
n(S - r'.v)(I- v2) S 

(2.15)

12



and where N and V are functions of both the position r of a point as well as the

ray direction r' through that point, and v = V/c is nondimensional medium

velocity and it has a magnitude equal to v. Note that, we have used ' and " to

denote the first and second derivatives with respect to s, respectively.

In the ocean, the current velocity is small compared to the speed of

sound. Therefore, Eq. (2.12) can be simplified by eliminating the second order

terms involving v" in N and V so that

N=n , V-=n(1-r'.v)v, (2.16)

and
(r".V')V = 0. (2.17)

By doing so Eq. (2.12) reduces to

d ( V+ x fl(l - r'-v)v 1 =d s (2.18)

By replacing r' with dr/ds in Eq. (2 18) we have

dnd) + x Vxn(l--E-v)vl=Vn
dsdS l1 (2.19)

In this thesis we neglected the ray curvature in the horizontal plane and

let the reference sound speed profile to be a function of depth z only. This

restriction implies that the reference ray paths are confined to lie on vertical

slices normal to the xy plane (Ziomek, 1985, pp. 232). In Figure 2-2 a ray path

with such a restriction is shown. On a vertical slice (i.e., a Range-Depth Rz

plane), the equations governing the planar rays on this plane are

13



d (ndR a n- (-d - -d-snVR)
TsJ - - (flRaR (2.20)

and
d dz d L, n^
J- (n S) - d-(snv ) z = - ,

az (2.21)

where and z are the unit vector in R and z direction, respectively.

'dR o

x 0

z (depth)

Figure 2-2: The Ray Path Restricted in a Vertical Slice Normal to xy

Plane.

Since the reference sound speed profile is taken to be a function of

depth only, we can simplify the differential equation (Eq. (2.20)) to get

dR coso. - v. +  n(Z)tR

ds n(z) = cos(9) (2.22)

or
2

dz =+ n(z) -1 = tan(O).
aR - cosoo - V°+ n(Z)ZR (2.23)

where vo is the medium speed at position (Ro, z.) in the ray path direction. As

shown in Figure 2-2 o and 0 are the initial launch angle at position (Ro, z,) and

14



ray angle at position (R, z), respectively; Eq. (2.23) can be integrated in either

the R or z directions to get the ray paths. In our raytracing we divided each

range connecting each of the transceiver pairs in the Greenland Sea into 1,000

steps and integrated Eq. (2.23) in the R direction for the corresponding depth

values. Integrating in range gives, for each ray path, depth of the trajectory as a

function of range. The function has a one-to-one correspondence.

2. Numerical 4th Order Runge-Kutta Integration Method

An accurate ray path can be calculated using a well known numerical

4th order Runge-Kutta integration method. From Eq. (2.23). the integral for

which we need to compute is:

R

Z = [s n(z) ] -1 dR.Z = z 4"-COS60_ -Vo + n(z)L'R

fRo (2.24)

The numerical 4th order Runge-Kutta integration method is given by

the following formulae (Gerald, 1989, pp. 358):

Zn+ 1 =z n + J f [R, z(R)] dR = zn + j-(k+ 2k2 2k 3 + k), (2.25.1)

where
r2

f [R, z(R)] = + n(z) j - 1
[cos 0o - V 0 + n(z)v R (2.25.2)

kI  h f(R,, ,zn), (2.25.3)

k2 = h f(R, + 1 h, zn + I k,), (2.25.4)2 2

k3 = h f(Rn+ 1h, zn + Ik2), (2.25.5)

and

15



k4 = h f(R, + h, z, + k3). (2.25.6)

A step size h has been selected to limit the numerical error to a

tolerable size. The global error (i.e., discretization error) accumulated along the

entire interval R by the 4th order Runge-Kutta method is (Gerald, 1989, pp.

358)
5Rh4 4-

O(h5) = --- f [ z(0) , < <h.180 (2.26)

The error cannot be exactly determined because the position (R, z) - [ , z( )] is

an unknown with t bounded by the interval [0, hi. A standard way to determine

whether the z values are sufficiently accurate is to compare the value computed

using a step size of h with the value calculated using the half of h. If this gives

only a change of negligible magnitude, the results are accepted; if not, the step is

halved again until the results are satisfactory (Gerald, 1989, pp. 358).

3. Turning Point

As an acoustic ray travels through an ocean volume it will be refracted

upward or downward. When the ray angle goes to zero, the ray will start to

bend up or down. The position of this zero ray angle point is called the turning

point.

When a ray is traced to a position which is less than a step size away

from a turning point, we use a linear gradient approximation to calculate the

depth of the ray at the terminal of that step. This approximation near a turning

point is needed because the function for which we integrate will no longer be the

same after the turning point. There will be a sign change in the function. The

curvature ic can be used to calculate the ray path around turning point in the

linear gradient case. Ugin~ius (1970) has derived the following equation of

curvature:
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K = Ic (V - ) + dv (2R 1)1
d ds E0(2.27)

Let the gradient of sound speed dc/dz be gc and the gradient of medium speed

dv/dz be g, Eq. (2-27) becomes

K =[gc(v - cosO) + g ,(2cosO v - 1). (2.28)

Since g., and v are very small, the term involving the product of g,

and v is negligible. Thus Eq. (2.28) can be approximated by

[gc(v- cosO)- gv)l
c (2.29)

The radius of curvature Ris the reciprocal of 1, i.e.,

C

[ggp-cs) v] (2.30)

Under the assumption of constant gradients near a turning point, the

local radius R is also a constant, which result in a circular ray path, locally. If

the radius R were negative, the radius would curve upward and vice versa

(Kinsler, 1982, pp. 401-402). In the following discussion Rwill be referred to as

the magnitude of the radius of curvature.

The geometries of segments of ray paths through turning points are

qhown in Figure 2-3 and Figure 2-4, where 01 is the ray angle before the turning

point and 02 is the ray angle after the turning point. The corresponding depth

increment can be equated as

zi 1 - zi = ± (Rcos0 2 - cos0i), (2.31)

17



step size h

R

Zi A.

Zi+I -
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Figure 2-3: The Geometry of a Downward Turning Ray Path.

8-- step size h m

02
Zi+l - -_ ---

Z i . __-- - -

z (depth)

Figure 2-4: The Geometry of an Upward Turning Ray Path.
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where

Rcos02= - (h- 9sin0 1) , (2.32)

and "+" is for downward curve while "-" is for upward curve. From Eq. (2.31)

the depth of the turning point is simply given by

zr = z i ± (1- cos0 1). (2.33)

4. Surface Reflection

Due to the upward refracting nature of the Greenland Sea sound

channel, surface reflection of rays is of importance. The ray path is

discontinuous at the point of reflection and the equation for rays Eq. (2.24) is not

valid here. We need to develop a procedure to calculate the local path trajectory

near a reflection point in an other way. The same linear gradient assumption, as

used for the calculation near a turning point is applicable here again.

Similar to Eq. (2.31), the depth increment in a range step within which

a surface reflection occurs is

zi +1 - zi = ± (RcOs0 2 - Rcos0 1). (2.34)

In the case of convex path segment (figure 2-5), Rcos0 2 is given by

42
Rcos0 2  R V - (2Rsin0 - Psin0 1 - h (2.35)

and
RsinO = W&- (Rcos0 1 + Z) . (2.36)

In the case of a concave path segment (Figure 2-6), Rcos0 2 is given by
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Figure 2-5: The Geometry of a Surface Reflected Convex Path Segment.
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Figure 2-6: The Geometry of a Surface Reflected Concave Path Segment.

20



Xcos0 2 = 2 (2 sin 0- sinO1 + h) (2.37)

and

.sinO = Ix- -_(Xose1-Z - (2.38)

Having all the equations coded in FORTRAN, predictions of ray paths as well as

eigenray finding were possible.

5. Eigenrays Finding

Since the sound-speed profile in the central Greenland Sea gyre is very

nearly adiabatic below the surface layers, a linear and range-independent sound

speed profile was selected to represent the reference state co(z), as shown in

Figure 2-7 (left). We then use this reference state to calculate the ray pattern of

transmission in the acoustic forward problem.

SSP RAY TRACE BETWEEN ARRAY -1 & 62

-1

1.45 1.56 6 2e 46 b0 8e 10
C (Km/s) RANGE IKmI

Figure 2-7: Typical Sound Speed Profile and Ray Path with The Ray Angle
from -150 to 0 in The Greenland Sea Project Area.
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In Figure 2-7 (right) the ray paths shown are the typical propagation

pattern in the arctic environment. The rays with fewer loops, that reach the

deeper layers, are the faster paths for the acoustic energy.

In order to search for rays that reach the receiver (i.e., eigenrays) we

need to shoot rays with a range of launch angles. Given an angular interval

within which all possible eigenrays lie, we shall be able to determine the

eigenrays by looking for the intersections between the arrival depth curve and

the receiver depth line as illustrated in Figure 2-8. Three eigenray patterns

associated with 3 different ranges are shown in Figure 2-9. We only choose 6 to

7 out of as many as 30 eigenrays that sample the ocean from the surface to 1 km

depth. Figure 2-10 shows the selected eigenrays for the three ranges. There are a

total of 91 eigenrays will be used to conduct our sensitivity study.
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Figure 2-8: Arrival Depth Curve for Eigenrays Finding.
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SSP EIGENRAYS BETWEEN ARRAY 01 & 2

(a) -2

0
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C (xm,s) RANGE fKgI

SSP EIGENRATS BETWEEN ARRAY *1 & -b

(b)
U j
0

-3

1.45 1 5o 0 20 40 b6 80 100
C (KflS RANGE 11mi

0 SSP EIGENRAYS BETWEEN ARRAY 01 & 4

(C) -2

-3

1.45 1.580 20 40 60 so 100 120 140 160 ISO 200
C 1Km/9) RANGE lIKaI

Figure 2-9: Typical Eigenray Pattern for Three Different Range as in (a)
Range = 123.6 km, (b) Range = 105.2 kin, and (c) Range = 200.1 km.
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1.45 1.56 6 26 46 66 86 106 126 146 166 180 200
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Figure 2-10: Typical Selected Eigenray Pattern for Three Different Range
as in (a) Range = 123.6 kin, (b) Range = 105.2 kin, and (c)
Range = 200.1 1.-n.
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III. STOCHASTIC INVERSE METHOD

In the forward problem the ray travel times are modeled using Eq. (2.9). In

this chapter, we discuss the inversion of Eq. (2.9) using a Gauss-Markoff

estimator to obtain an optimal estimate of the three dimensional sound speed field

in the ocean volume monitored by the acoustic array. The estimation error and

system resolution will be analyzed in the next chapter in an effort to quantify the

performance of the array.

A. ESTIMATION OF SOUND SPEED FIELDS.

1. The Gauss-Markoff Estimator

In the Gauss-Markoff stochastic inverse method, both the data bT and

the unknown field &. are assumed to be random vectors. The forward model

relating the data and the unknown field is

UT = A & + e, (3.1)

where e is the experimental noise which corrupts the travel time measurement; e

is assumed to be uncorrelated with fT and &.

The system Eq. (3.1) is highly underdetermined, and thus without

additional constraints other than just the data, the system admits infinite number

of solutions for k. In stochastic inverse methods a unique optimal linear

estimate of the unknown parameters, &, can be constructed by incorporating a

priori knowledge of the parameters in a covariance matrix.

The well known Gauss-Markoff estimator is chosen here because it

requires no knowledge of probability densities. This so called distribution free
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property is the most important feature of the Gauss-Markoff estimator (Liebelt,

1967, pp. 136). The estimate 5c satisfies a minimum mean square error

criterion

I c I ) minimum. (3.2)

Following Liebelt (1967) and Chiu (1987), the Gauss-Markoff estimate

is given by
T-1&=CA C1, (3.3)

where

F4 + LC C (3.4)

is the covariance matrix of the error = C in the estimate, and C_ and C&

are the covariance matrices of noise e and the unknown parameters &,

respectively. The construction of the estimate requires finding the inverse of the

matrix C + AT C A.

The trading of system resolution for stability in the optimal estimate can
I i

be revealed by a singular value decomposition of the matrix C_2AC2 such that

C 1A C =UAVI (3.5)

where the diagonal elements Xi of the matrix A are the associated singular values,

and the columns % and v. of U and V are the left and right singular vectors,

respectively.

The matrix, Eq. (3.5), is the operator associated with a

nondimensionalized version of the forward model:
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C 2 PIC 2AC C 2- + C
I(3.6)

which is transformed from Eq. (3.1). Using Eq. (3.5), Chiu et al (1987) have

shown that the minimum mean square error estimate can be expressed as

& V I+A 2 A f 37

or equivalently as
- k X T

2C-I"=CgQ2)uYC

+ 1 (3.8)

The vectors v,. are the base vectors occupying the solution domain such

that any solution can be expressed by a weighted sum of these vectors. A singular

value ki much small than one is associated with a singular vector v' that models

a highly unstable and oscillatory function. The linear estimator downweights

these oscillatory function to stabilize the estimate.

B. ERROR AND RESOLUTION

In the previous section, we introduced an estimator which solves the inverse

problem. In this section, we derive measures which are used to quantify system

performance.

1. Error of the Estimate

The error covariance matrix of the estimate was expressed in Eq. (3.4),

which can also be equated, using Eq. (3.5), as

CL =C- I-VA(I+A AVT] C3

8(3.9)
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The diagonal terms of this matrix are the mean square errors of the estimate at

each box.

The error of the estimate, LA- c, has two components, bias and

random error. The bias, b = )- , results from an insufficient number of

data, and the random error, A = - () is caused by the random

experimental noise. Since these two components are statistically independent, C.

can be expressed as

c,- bbT ) + C A , (3.10)

where

C A(L^.) C &A C (3.11)

or equivalently,

CA() =CF [VIA A + A C2

T L (3.12)

An expression for (bb T ) can be obtained by letting the random error

covariance C,(W)approaches zero, i.e. by letting all the eigenvalues k.approach

infinity in Eq. (3.9). The result is

(bbT ;C [ I_ vvT
(bbT~)=CL[I C" (3.13)

2. Resolution

We define a symmetric, nxn matrix

_-1

R = VA(I+A AV (3.14)

as the resolution matrix. Using the definition of R, Eq. (3.9) becomes
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1 1

Cf= C5FI-Rl C'
SC& L (3.15)

If the resolution matrix is an identity matrix (that is, R=I), then the

error is zero. On the other hand, if the resolution matrix is not an identity

matrix, for example, if it has nonzero diagonal elements then the error is

nonzero. This implies that the mean square error is intimately related to system
Tresolution. The ith row of the resolution matrix, {r} , is defined as the

resolution kernel of the ith box and it describes how much neighboring boxes

contribute to the error of the estimate in the ith box, or how well the field at the

ith box can be resolved (Menke, 1984, pp. 61-68). Figure 3-1 illustrates the

structure of a typical resolution matrix.

N

N
N

N

N

N
N

Figure 3-IL: Plot of Selected Rows and Columns of The Resolution Matrix
R.

If the ith resolution kernel has a single spike centered at the diagonal,

then the ith box is perfectly resolved. If the peak is very broad, the ith box is
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poorly resolved and has a large error due to the fact that the estimate at the ith

box is an average of the neighboring field. In an other word the energy in the

estimate is spread to neighboring boxes due to the poor resolving power of the

system

Two measures of the resolution of the estimator have been proposed.

One is the so called resolution "spread" (Miller, 1989, pp. 333), which measures

the difference between the resolution matrix and an identity matrix via the

expression
n n 2

spread= I (Rij-I ij)
i = 1 -- (3.16)

The second measure is the so called minimum resolution length (Chiu,

1987), which measures the local resolution at each box location. The resolution

length is defined to be the distance at which the resolution energy falls to half of

its peak value. To be more precise the minimum resolution length at the ith box

is defined as the square root of the second central moment of energy distribution

in the ith resolution kernel ({rT ). The minimum resolution lengths in the three

spatial directions may be expressed as

x2 ryj(jxjyjz)
X y E d(3.17.a)

= ;(j v)d 2 ri (Jx,Jy,Jz)

jiyX zjx jy (3.17.b)

and
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[ j z z ~ 2 ri (jx,jy,iz)

1A3X jYZj =(3.17.c)

where Ej is the total energy of the ith resolution kernel rT .

nxEi 2,

= E r i (jxjyjz).
jx jy jZ (3.17.d)

In Eq. (3.17.a-b) -4 and Hyare the minimum horizontal resolution lengths in the

x and y directions, respectively, while V is the minimum vertical resolution

length. Physically, the minimum resolution lengths determine the minimum eddy

size that can be resolved adequately by the monitoring system. Note that we have

expanded the row index i and column index j into three dimensional box indices,

(ix, iy, iz) and (jx, jy, jz), in Eqs. (3.17.a-d). The expansion was done according

to the following equations.

i = (ix-1)xnyxnz + (iy-l)xnz + iz = 1, 2 ....... n, (3.18.a)

j = (jx-1)xnyxnz + (jy-l)xnz +jz = 1, 2 ....... n (3.18.b)

with

n = nxXnyxnz, (3.18.c)

where ix, jx = 1, 2 ....... nx, is box indices in the x direction; iy, jy = 1, 2,

...... ny, is box indices in the y direction; iz, jz = 1,2 ....... nz, is box indices in the

z direction. With nx = 10, ny = 10, and nz = 5, the total number of boxes is n =

500.

From the above discussion in this chapter, It has been found that the

RMS error and resolution length do not depend on the experimental data fT, but

only on the sound speed perturbation covariance matrix CL, travel time error
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covariance matrix Ce, and the transfer function A (which depends on the array

geometry and the number of rays).
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IV. RESULTS OF SENSITIVITY STUDY

In the last chapter, we outlined two ways to evaluate the performance of the

Greenland Sea tomography array by examining the statistics of the error in the

estimate and the resolution of the system. As mentioned the RMS error of the

estimate and the system resolution measures depend on the covariance matrix of

sound speed perturbation C&, the covariance matrix of noise C.., the array

geometry, the number of eigenrays but not the data LT. Therefore, even without

using actual or synthetic measurements, the performance of the array and ray

path geometry can be evaluated given the covariances. By varying the ocean

correlation length (which determines CL), the rms value of noise (which

determines Ce), and the array geometry (which determines A), we have

examined the changes in system performance as these ocean and acoustic

parameter vary. The results are discussed in Section IV-B.

By incorporating statistical information concerning the covariance of the

field, the indeterminacy of the unknown field, 5c, is eliminated. Since the

covariance matrix C& is the a priori information that we supply to the

estimator, we are particularly interested in determining the sensitivity of the

estimate to the uncertainties in the correlation lengths of the sound speed

perturbation field. This sensitivity study was accomplished through inversions of

synthetic data generated in the computer. The results are discussed in Section IV-

C.

In the following section, we first discuss the method we use to simulate sound

speed perturbation fields and travel time data in the computer.
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A. COMPUTER SIMULATION OF MESOSCALE SOUND SPEED

FIELDS AND TRAVEL TIME DATA

The temperature, sigma-t, and sound speed profiles obtain by a CTD

(Conductivity, Temperature, and Density) cast in the Greenland Sea (Worcester

and Howe, 1989) is shown in Figure 4-1. We have superimposed on this data a

linear profile (dash line) which we have chosen as the reference sound speed

profile. In the simulation work, we take that the perturbations of sound speed

occur only in the water column shallower than 1,000 m. This is not a bad

assumption as indicated by CTD profile obtained by Worcester and Howe. For

simplicity, we also neglect ocean currents in our analysis and work with forward

transmission paths only.

In the reconstruction of the sound speed perturbation field, the correlation

covariance function of the field (or its discretized version, i.e., the covariance

matrix C.&.) needs to be specified. We assume that the sound speed perturbation

field is homogeneous and has a gaussian shape so that we can specify the

correlation between the field at two different points in an analytical form as

2Cov(Ax,Ay,Az) = 2 e [ (L, 2 (3.8)

where Ax is the horizontal separation between the two points in the x-direction,

Ay is the horizontal separation in the y-direction, and Az is the vertical

separation. The correlation length, Lx, Ly, and Lz, determine the correlation

scale of the field. TABLE 4-1 summarizes the various sets of correlation lengths

(Lx, Ly, and Lz) that we used to simulate the sound speed perturbation fields of

different scales. For all the simulated fields, we use aT, = 5 m/s.
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Figure 4-1: The CTD Data of Mooring #1 From the Deployment Cruise
(Worcester and Howe, 1989).
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TABLE 4-1 : THE SIMULATED OCEAN VOLUME.

Ocean volume Lx (kin) Ly (kin) L, (kin)

Eddy204 20 20 0.4

Eddy304 30 30 0.4

Eddy4O4 40 40 0.4

In order to perform simulation inversions in the computer, we need to

generate a set of travel time data for input to the estimator. A normal random

deviate generator is used to generate realizations of a random process having a

specified covariance. This random deviate generator is used to simulate the sound

speed perturbation and noise fields. The simulated fields are then combined using

the model (given by Eq. (2.9)) to give the simulated travel time data. A block

diagram of the process is shown in Figure 4-2.

Random
C deviator -c A _T

generator

Random
C e - deviator - e

generator

Figure 4-2 : The Block Diagram of Travel Time Generation.

The generated travel time data with additive random noise are the input to

the estimator. An estimate of the sound speed field, ' is the inverse result,

which depend on the matrices C&, C, and A in addition to the data themselves.

The sensitivity of the system can thus be evaluated for changes in correlation
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length of the sound speed perturbation field, changes in noise level, changes in

array geometry due to mooring failure, etc. To simulate noise-free

measurements, we use a very small noise level with an rms value of a. = 0.1 Ms.

The optimal estimate is obtained when the correlation length used for

inversion is exactly the same as that actually present in the ocean volume (that is,

when the a priori covariance C& is correct). In fact, because the a priori

covariance is never exactly known, optimal estimates are generally hard to

obtain. The quality of suboptimal estimates can be evaluated by studying the

effect of correlation length uncertainties ALA, ALy, and AL. on the performance

of the estimator.

B. SYSTEM PERFORMANCE

1. RMS Error Analysis

The local RMS error as a function of box index j in the estimate (that

is, the RMS error at the jth box) can be obtained by evaluating the square root of

the jth element along the diagonal of the estimate error covariance matrix C,.

This local RMS error gives a picture of how the errors are distributed spatially.

The square root of the spatial average of the mean square errors at each of the

boxes, GE, was calculated to get an idea of how much the local error varies over

the whole ocean volume being studied.

Figure 4-3 shows the contour plots of the local RMS estimate error for

one set of system parameters in each of the five vertical layers. The RMS error

for this case is approximate from I m/s to 2.5 m/s (or 20% to 50% compared to

the 5 m/s signal level) and shows gradual dependence on horizontal or vertical

position inside the perimeter of the array. The error outside the array's

perimeter increases rapidly as distance from the array increases. Obviously, we
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Figure 4-3: RMS Error (m/s) at Each Layer. The contour level is 0.5 rnls.

39



cannot obtain accurate estimate of the sound speed perturbations for points

outside the array. There is little difference between the RMS errors in the

individual layers because each vertical layer are well sampled by the eigenrays

whose turning points occupy every layer. Because of the rather weak vertical

dependence, in the following discussion we present only the analysis for the first

layer.

The local RMS error maps for the first layer for different horizontal

correlation lengths are shown in Figure 4-4. The system parameters are identical

to those of Figure 4-3, except that the horizontal correlation length is varied

from 20 km to 60 km in a 10 km step. We see that a wider covariance matrix

(i.e., a longer correlation length) results in a lower estimate error. This

observation is not surprising, since a longer correlation length means that there

is more gradual variation in sound speed perturbation with position, and that

neighboring boxes are more correlated. An increased correlation reduces the

number of degrees of freedom in the solution, and thus giving a better

determined solution.

In Figure 4-5, the maps are generated using the system parameters

identical to those used to generate Figure 4-3, except that the vertical correlation

length is varied from 0.2 km to 0.6 km in a 0.1 km step at a fixed horizontal

correlation length of 40 km. There is less change in RMS error over the entire

range of correlation lengths for this case than for the case shown in Figure 4-4.

This is because the eigenrays sample the vertical layer more adequately than the

horizontal sections.

The effect of an increased (or decreased) noise level on the estimate are

shown in Figure 4-6. A higher noise level results only i i a slightly higher RMS
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Figure 4-4: Estimate RMS Error (m/s). The contour level is 0.5 m/s. The
vertical correlation length Lz is fixed at 0.4 kmn.
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Figure 4-6: Estimate RMS Error at Different Noise Levels. The contour
level is 0.5 rn/s.
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error. The estimate is thus not as strongly affected by changes in noise as it is by

changes in the ocean correlation length.

Figure 4-7 shows the effect of array element failure on the RMS error

(the array configuration is superimposed on the contour plots to give an idea of

how the estimate depends on the array configuration). Within the perimeter of

the remaining "good" elements, the RMS errors are only about 25% (0.5 m/s)

higher than those given by the full array (2.0 m/s). However, the errors outside

the area covered by the good elements increase rapidly to 100%. The failure of

array elements has a very pronounced effect on the estimate, especially when two

or more elements fail. The system essentially loses its ability to give accurate

estimates in areas that do not have rays passing through them.

A single measure of RMS error can be evaluated by calculating a spatial

average" of the individual local errors. We use GE for such a global measure

and it is computed by assuming the individual mean-square errors at all the box

locations and then taking the square root of that sum. Figures 4-8 and 4-9 show

OE as a function of the ocean horizontal and vertical correlation lengths,

respectively, for various array geometries and noise levels. In all cases, 0 E was

found to decrease with increasing L, and Ly (see Figure 4-8). However, a E is not

as sensitive to changes in L, as it is to changes in L, and LY (see Figure 4-9). This

is due to the fact that the vertical structure is sampled adequately whereas the

horizontal structure is not. In view of this, in the following discussion, we will

only discuss the sensitivity of the results of our resolution analysis with the

vertical correlation length fixed at 0.4 km.
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Figure 4-7: Estimate RMS Error (m/s) in Mooring Failure Cases. The
contour level is 0.5 m/s. L,= Ly = 40 kmn, and LZ 0.4 kmn.
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2. Resolution Analysis

Two measures of system resolution were defined in the last chapter.

One measure is the minimum resolution length, which gives the local resolution

at each box. The minimum resolution length is essentially the size of the smallest

ocean feature which can be resolved by the array. A large minimum resolution

length indicates a poor resolving power. Figure 4-10 shows the minimum

resolution length 174 in the x direction as a function of L" and Ly. We see that

for Lx and Ly greater than 30 km, Hx is relatively constant over the interior of

the array and in most of the region of interest. On the other hand, if Lx and Ly

are less than or equal to 30 km, ,4 varies heavily on both x and y and becomes

very large in regions containing no y-oriented ray paths. The behavior of %-, the

minimum resolution length in the y direction, is analogous to the behavior of 9-

and is shown in Figure 4-11. In general, the average minimum resolution length

is approximately 30 km inside the monitored region as shown in Figure 4-10 and

Figure 4-11.

Figure 4-12 shows the behavior of Hx and Hy as noise level change

while the horizontal and vertical correlation lengths are fixed at 40 km and 0.4

km, respectively. We see that varying the noise level has little effect on 9- and

9H. Figure 4-13 shows how the failure of various array elements affects H. A

diagram of the array configuration is superimposed on each plot in Figure 4-13

to show the connection between array geometry and H. Despite the element

failures, "(4 remains relatively constant inside the area covered by the remaining

array elements, but it increases rapidly as we move outward from the perimeter.

Although there is some resolving power outside the array perimeter, it is highly

inadequate.
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The second measure of system resolution is the resolution spread (Eq.

3.16), which is the square of the Frobenius norm of the difference between the

resolution matrix and the identity matrix. The resolution spread is thus a single

scalar quantity which describes the resolution of an estimator over an entire

region. Figure 4-14 shows resolution spread as a function of horizontal

correlation length for each of several noise levels and array geometries. We see

that the resolution spread does not significantly depend on changes in correlation

length, except when noise level is increased. That is, system resolution is a lot

more sensitive to changes in correlation length when the system is not noise free.

Generally, the resolution spread depends most strongly on the array geometry at

any fixed correlation length.
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Figure 4-14: Resolution Spread vs. Horizontal Correlation Length.

52



C. SENSITIVITY OF INVERSE SOLUTION

Synthetic travel time perturbation data T (refer to Figure 4-2 for the

generation of LT) were used to reconstruct the sound speed perturbation fields c

simulated in the computer. The sensitivity of the estimate to uncertainty in the

correlation length specified for inversion is examined in this section by

comparing the suboptimal estimates to the optimal estimates. The optimal

estimates are those derived using an exact covariance of the field whereas the

suboptimal ones are consequences of inexact covariances.

Figure 4-15 shows the simulated field Eddy404 (refer to TABLE 4-1 for the

simulation parameters), its optimal estimate, the associated RMS error as well as

the difference between the estimate and the simulated field. The estimate error

.&-L is low (from 0 to ±2 m/s, which is from 0% to 40% compared to a signal

level of 5 m/s) over most of the area inside the array. The error is larger in the

left edge and corners. Figures 4-16 compares the estimate errors of some

suboptimal estimates generated using correlation lengths differ from the true

one. The difference between the assumed horizontal correlation lengths for

inversion and the true lengths are denoted by AL,, and AL, in the figure.

Obviously, the effect of a positive correlation length uncertainty seems less

harmful than that of a negative one when the actual correlation length is 40 km.

Figure 4-17 shows the effect of uncertainty in the noise level (i.e., in the

noise covariance matrix C.) on the estimate. The maps on the left are the

estimates of the Eddy4O4 field with various noise level uncertainties Ae. On the

right the associated errors are displayed. Generally, a higher noise level

uncertainty gives a higher estimate error, although the differences in the errors

are quite minimal.
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are in m/s. L,= L y = 40 kmn, Lz = 0.4 km, and AL.= ALy = ALz= 0.
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To gain insight into the global performance of the estimator, we calculated

M, the square root of the spatial average of the local squared errors. Figure 4-18

shows c% as a function of horizontal correlation uncertainty for each of the three

simulated ocean volumes having horizontal correlation length of 20, 30 and 40

kin, respectively.

5

M eddy202-h

4

3 * eddy304-h

(mis) 2 . eddy404-h

o I I ! I I

-40 -30 -20 -10 0 10 20 30 40 (kn)

Figure 4-18: Square Root of Spatial Average Square Error vs.
Horizontal Correlation Length Uncertainty.

It is interesting to note that, for assumed horizontal correlation lengths of L,

and LY both equal to I km*, the error is 3.4 m/s for all the three cases estimated.

Furthermore., , is less sensitive to a positive correlation length uncertainty than

* Correlation length of zero implies no a priori information. Our software
does not permit the use of zero correlation length, so we used correlation length
of 1 km to approximate the case of no a priori information.
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to a negative correlation length uncertainty when the actual ocean correlation

length is long (e.g. longer than 20 km, see the curves associated with ocean fields

Eddy304 and Eddy404), while it is more sensitive to a positive uncertainty than

to a negative uncertainty when the actual correlation length is short (e.g. 20 km,

see the curve associate with Eddy204).

In an ocean with small eddies, Figure 4-18 suggests that using a correlation

length longer than the actual one could result in a large increase of estimate

error. Whether or not the estimate is sensitive to an inexact and longer

correlation length used really depends on the resolution of the system. We see

from Figure 4-10 that the minimum horizontal resolution length of the

Greenland Sea array is approximately 30 km, almost regardless of what the

correlation length of the field is. This implies that the array is unable to resolve

ocean features smaller than 30 km. In other words, an ocean field with a

correlation length shorter than 30 km (e.g. 20 km) can not be monitored

adequately. In that case any additional a priori information, even though wrong,

is totally absorbed by the estimator for solution construction, thus leading to an

uncertainty sensitive estimate. In contrast, for an ocean field with a correlation

length longer than 30 km, the array turns into an adequate system. The

corresponding estimator now has the ability to reject extraneous information.

The result is an uncertainty insensitive estimate.

TABLE 4-2 shows the value of (% for each suboptimal estimate, as well as

the percent difference in c between each suboptimal estimate and ti.- optimal

estimate for the ocean field Eddy404. By selecting a value for the maximum

acceptable percent difference in a4 between the suboptimal estimators and the

optimal estimator, we can compute from the curve, in Figure 4-18 the maximum
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allowable uncertainty in correlation length. TABLE 4-3 shows, for each

simulated field, the allowable range of uncertainty in correlation length if the

difference between (% for the suboptimal and optimal estimators is not to exceed

ten percent.

TABLE 4-2 THE ESTIMATE ERROR AND % DIFFERENCE TO

THE OPTIMAL ESTIMATE FOR EDDY404.

ALX, ALY (km) 04 % difference

-30 3.30 75.53

-20 2.50 32.98

-10 2.06 9.57

10 1.88 0.00

20 1.99 9.63

30 2.10 11.70

TABLE 4-3 : TEN % DIFFERENCE ALLOWABLE UNCERTAINTY

RANGE.

Lx, Ly (km) Allowable ALx and ALy Range (kin)

20 km -20.0 - 15.6

30 km -11.8 23.7

40 km -10.4 -25.8

TABLE 4-3 quantitatively confirms our earlier observation from Figure 4-

18 that the estimate error is less sensitive to a positive uncertainty in correlation

length than to a negative one in ocean volumes containing large structures, and

the result is reversed for an ocean volume containing small structures.
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V. CONCLUSION

A. ESTIMATOR PERFORMANCE

In order to obtain a unique estimate of the sound speed perturbation field, a

priori information in the form of a sound speed perturbation covariance matrix

is used in the Gauss-Markoff estimator. As discussed in Chapter 4, given that the

sound speed perturbation field has a gaussian shape correlation, the optimal

estimate for the field is obtained when the assumed correlation length (i.e., the

correlation length used to calculate the input covariance matrix C ) is equal to

the actual correlation length present in the ocean. A primary goal of this thesis

is to evaluate the effect on our estimator when the assumed correlation length is

not equal to the actual one. As this happens, the estimate becomes suboptimal.

When the actual correlation length is not exactly known, it has been suggested by

Cornuelle (1985) and Chiu (1987) to use a conservative assumption (i.e., a small

correlation length) so as not to "assume too much" about the sound speed

perturbation field.

From our simulation study we found that the optimal estimate for the sound

speed perturbation field typically has an RMS error between 1 and 2 m/s (i.e.,

20% to 40% comparing to the 5 m/s signal level). For the suboptimal case, the

estimate is actually less sensitive to a positive correlation length uncertainty (i.e.,

the assumed correlation length is longer than the actual one) than to a negative

uncertainty when the actual correlation length is longer than 30 km. On the

other hand, when the actual correlation length is shorter than 30 km (for

example 20 km) the estimate becomes more sensitive to a positive uncertainty
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than to a negative uncertainty. The reason for this switching of behavior at a

correlation length of 30 km has something to do with the resolution of the

Greenland Sea array. In our resolution analysis we found that the Greenland Sea

array has a resolution length of about 30 km. Therefore, for an ocean field with

a correlation length small than 30 km (for example 20 km), the use of a

correlation length longer than the actual one for inversion would ingest

extraneous information into an information hungry estimator. This estimator

basically accepts all the wrong information. It is thus preferable to be

conservative and use a correlation length which is likely to have a negative

uncertainty when the system resolution is inadequate for measuring the expected

scale. On the other hands, if we know from resolution analysis that the resolution

is adequate for a particular ocean region, a positive correlation length

uncertainty is acceptable in this case.

By specifying the maximum acceptable percent difference in aY (which is

essentially a spatial average of local estimate errors) between the suboptimal and

optimal estimators, we arrive at one possible criterion for designing the

estimator. If this difference, in the case of an expected ocean correlation length

of about 40 km, is required to be less than ten percent (for example), the

estimator can tolerate any correlation length uncertainty between -10.4 and 25.8

km, a spread of 35.6 km.

We have also shown that a higher noise level results in basically unchanged

RMS error and resolution. This result suggests that the estimate error is not

dominated by the random error, but rather by the bias error arising from the

fact that the tomography problem is underdetermined. This insensitivity to

62



random noise is one benefit of using a Gauss-Markoff estimator, which always

tries to minimize the effect of random noise (Chiu et al, 1987).

The failure of array elements has a very pronounced effect on the RMS

error and resolution, especially if two elements fail. The comparison of cases

simulating the failure of one or more elements indicates that the RMS error

becomes very large and resolution becomes very poor in areas that no longer

have rays passing through them. However, in regions still containing acoustic

rays, the RMS error is only 25% higher than that of the full array case.

B. RECOMMENDATIONS FOR FUTURE IMPROVEMENT

All numerical simulations were performed on a DEC MicroVAX. Each run

required roughly five and one-half hours of CPU time. A machine of greater

computational power and larger memory size would allow us to divide the ocean

volume into finer spatial meshes for improved analysis.

We can derive statistical information concerning the vertical ocean structure

from historical data using the empirical orthogonal function (EOF) approach of

Cornuelle (1983, pp. 139). EOF analysis has been widely applied in research

fields other than tomography. In EOF analysis, the vertical structure of the ocean

is represented by a set of orthogonal vectors. These vectors can be derived from

a singular value decomposition of a matrix containing historical data from

hydrographic surveys. The EOF method gives a priori information about the

vertical structure which is more realistic than that provided by the Gaussian

shape correlation used in this study, and is recommended for use when the actual

tomographic data from the Greenland Sea Project become available.
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